基于二分网络表示学习的医学实体关系预测研究
Research on predicting medical entity relationships based on bipartite network representation learning
目的/意义 探讨网络表示学习与链路预测在挖掘潜在的医学实体关系方面的应用,为医学知识发现研究提供新视角。方法/过程 从PubMed数据库获取文献摘要,利用“主语-行为-宾语”(Subject-Action-Object,SAO)语义挖掘方案识别上述文献摘要中的疾病及药物治疗信息,抽取药物实体与疾病实体,构建“药物-疾病”二分网络,综合运用社会网络分析、网络表示学习、机器学习的方法分析网络结构及节点特征,挖掘医学实体间的潜在联系。结果/结论 随机森林模型效果最优,有效揭示了药物与疾病的关联知识,通过对预测结果的验证体现了研究方法的现实意义。
Purpose/Significance To combine the research of network representation learning and link prediction for exploring their application in mining potential medical entity relationships, thereby offering a novel perspective for medical knowledge discovery. Methods/Process The literature abstracts were obtained from the PubMed database, and disease and drug treatment information within these abstracts was identified using the Subject-Action-Object (SAO) semantic mining scheme. Drug entities and disease entities were extracted, and a drug-disease bipartite network was constructed. The network structure and node characteristics were analyzed comprehensively using methods of social network analysis, network representation learning, and machine learning to uncover potential connections between medical entities. Results/Conclusion Random forest has the best effect, effectively revealing the association knowledge between drugs and diseases, and demonstrating the practical significance of the research method through the verification of the prediction results.
吴胜男、董继宗、吴佳辉、王欣瑶、王璐琦、蒋环宇
医学研究方法基础医学
二分网络SAO语义挖掘网络表示学习机器学习医学知识发现
Bipartite NetworkSAO Semantic MiningNetwork Representation LearningMachine LearningMedical knowledge discovery
吴胜男,董继宗,吴佳辉,王欣瑶,王璐琦,蒋环宇.基于二分网络表示学习的医学实体关系预测研究[EB/OL].(2024-02-23)[2025-08-26].https://www.biomedrxiv.org.cn/article/doi/bmr.202407.00041.点此复制
评论