|国家预印本平台
首页|FAM122A ensures cell cycle interphase progression and checkpoint control as a SLiM-dependent substrate-competitive inhibitor to the B55?/PP2A phosphatase

FAM122A ensures cell cycle interphase progression and checkpoint control as a SLiM-dependent substrate-competitive inhibitor to the B55?/PP2A phosphatase

FAM122A ensures cell cycle interphase progression and checkpoint control as a SLiM-dependent substrate-competitive inhibitor to the B55?/PP2A phosphatase

来源:bioRxiv_logobioRxiv
英文摘要

The Ser/Thr protein phosphatase 2A (PP2A) is a highly conserved collection of heterotrimeric holoenzymes responsible for the dephosphorylation of many regulated phosphoproteins. Substrate recognition and the integration of regulatory cues are mediated by B regulatory subunits that are complexed to the catalytic subunit (C) by a scaffold protein (A). PP2A/B55 substrate recruitment was thought to be mediated by charge-charge interactions between the surface of B55α and its substrates. Challenging this view, we recently discovered a conserved SLiM [RK]-V-x-x-[VI]-R in a range of proteins, including substrates such as the retinoblastoma-related protein p107 and TAU (Fowle et al. eLife 2021;10:e63181). Here we report the identification of this SLiM in FAM122A, an inhibitor of B55α/PP2A. This conserved SLiM is necessary for FAM122A binding to B55α in vitro and in cells. Computational structure prediction with AlphaFold2 predicts an interaction consistent with the mutational and biochemical data and supports a mechanism whereby FAM122A uses the ‘SLiM’ in the form of a short α-helix to dock to the B55α top groove. In this model, FAM122A spatially constrains substrate access by occluding the catalytic subunit with a second α-helix immediately adjacent to helix 1. Consistently, FAM122A functions as a competitive inhibitor as it prevents binding of substrates in in vitro competition assays and the dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. Ablation of FAM122A in human cell lines reduces the rate of proliferation, progression through cell cycle transitions and abrogates G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells results in attenuation of CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a ‘SLiM’-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.

Wasserman Jason S、Faezov Bulat、Palacio Seren M、Cressey Lauren、Johnson Neil、McEwan Brennan C、Xu Qifang、Dunbrack Roland L Jr、Patel Kishan R、Zhao Ziran、Gra?a Xavier、Duncan James S、Fowle Holly、Kettenbach Arminja N、Kurimchak Alison N

Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineFox Chase Cancer Center||Institute of Fundamental Medicine and Biology, Kazan Federal UniversityFels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineNorris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center DriveFox Chase Cancer CenterNorris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center DriveFox Chase Cancer CenterFox Chase Cancer CenterFels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineFels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineFels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineFox Chase Cancer CenterFels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of MedicineNorris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center DriveFox Chase Cancer Center

10.1101/2023.03.06.531310

基础医学细胞生物学分子生物学

Wasserman Jason S,Faezov Bulat,Palacio Seren M,Cressey Lauren,Johnson Neil,McEwan Brennan C,Xu Qifang,Dunbrack Roland L Jr,Patel Kishan R,Zhao Ziran,Gra?a Xavier,Duncan James S,Fowle Holly,Kettenbach Arminja N,Kurimchak Alison N.FAM122A ensures cell cycle interphase progression and checkpoint control as a SLiM-dependent substrate-competitive inhibitor to the B55?/PP2A phosphatase[EB/OL].(2025-03-28)[2025-05-04].https://www.biorxiv.org/content/10.1101/2023.03.06.531310.点此复制

评论