Maternal hyperglycemia impedes second heart field-derived cardiomyocyte differentiation to elevate the risk of congenital heart defects
Maternal hyperglycemia impedes second heart field-derived cardiomyocyte differentiation to elevate the risk of congenital heart defects
Abstract Congenital heart disease (CHD) is the most frequently occurring structural malformations of the heart affecting ~1% of live births. Besides genetic predisposition, embryonic exposure to teratogens during pregnancy increases the risk of CHD. However, the dose and cell-type-specific responses to an adverse maternal environment remain poorly defined. Here, we report a dose-response relationship between maternal glucose levels and phenotypic severity of CHD in offspring, using a chemically-induced pregestational diabetes mellitus (PGDM) mouse model. Embryos from dams with low-level maternal hyperglycemia (matHG) displayed trabeculation defects, ventricular wall thinning, and ventricular septal defects (VSD). On the other hand, embryos from dams with high-level matHG display outflow tract malformations, ventricular wall thinning and an increased rate of VSD. Our findings show that increasing levels of matHG exacerbates CHD occurrence and severity in offspring compared to control embryos. We applied single-cell RNA- sequencing to define matHG-related transcriptional differences in E9.5 and E11.5 hearts as comparing to controls. Disease-dependent gene-expression changes were observed in Isl1+ second heart field (SHF) and Tnnt2+ cardiomyocyte subpopulations. Lineage tracing studies in Isl1-Cre; RosamTmG embryonic hearts showed Isl1+-SHF-derived cardiomyocyte differentiation was impaired with matHG. This study highlights the influence of matHG-dosage on cardiac morphogenesis and identifies perturbations in the Isl1-dependent gene-regulatory network that affect SHF-derived cardiomyocyte differentiation contributing to matPGDM-induced CHD. One Sentence SummaryProfiling of single-cell transcriptomics and SHF cell-fate identifies intrinsic deficits in cardiomyocytes that contribute to maternal diabetes-associated CHD.
Manivannan Sathiyanarayanan、Kodigepalli Karthik. M.、Majumdar Uddalak、Basu Madhumita、Garg Vidu、Zhang Xinmin、Mansfield Corrin
Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children?ˉs Hospital||Heart Center, Nationwide Children?ˉs HospitalDepartment of Pediatrics, Medical College of WisconsinCenter for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children?ˉs Hospital||Heart Center, Nationwide Children?ˉs HospitalCenter for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children?ˉs Hospital||Heart Center, Nationwide Children?ˉs Hospital||Department of Pediatrics, The Ohio State University College of MedicineCenter for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children?ˉs Hospital||Heart Center, Nationwide Children?ˉs Hospital||Department of Pediatrics, The Ohio State University College of Medicine||Department of Molecular Genetics, The Ohio State UniversityBioInfoRx Inc. MadisonCenter for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children?ˉs Hospital||Heart Center, Nationwide Children?ˉs Hospital
基础医学细胞生物学生理学
Manivannan Sathiyanarayanan,Kodigepalli Karthik. M.,Majumdar Uddalak,Basu Madhumita,Garg Vidu,Zhang Xinmin,Mansfield Corrin.Maternal hyperglycemia impedes second heart field-derived cardiomyocyte differentiation to elevate the risk of congenital heart defects[EB/OL].(2025-03-28)[2025-05-19].https://www.biorxiv.org/content/10.1101/2021.05.28.446177.点此复制
评论