|国家预印本平台
首页|Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice

Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice

Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice

来源:bioRxiv_logobioRxiv
英文摘要

Abstract Developing high yielding rice varieties that are tolerant to drought stress is crucial for the sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selection (GS) promises to be an effective breeding option for these complex traits. We evaluated the effectiveness of two rather new options in the implementation of GS: trait and environment-specific marker selection and the use of multi-environment prediction models. A reference population of 280 rainfed lowland accessions endowed with 215k SNP markers data was phenotyped under a favorable and two managed drought environments. Trait-specific SNP subsets (28k) were selected for each trait under each environment, using results of GWAS performed with the complete genotype dataset. Performances of single-environment and multi-environment genomic prediction models were compared using kernel regression based methods (GBLUP and RKHS) under two cross validation scenario: availability (CV2) or not (CV1) of phenotypic data for the validation set, in one of the environments. The most realistic trait-specific marker selection strategy achieved predictive ability (PA) of genomic prediction was up to 22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Tolerance to drought stress was up to 32% better predicted by multi-environment models (especially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the multi-environment models achieved similar PA than the single-environment predictions. We also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even in a population of low LD extent, provided marker selection is based on pairwise LD. The implications of these findings for breeding for drought tolerance are discussed. The most resource sparing option would be accurate phenotyping of the reference population in a favorable environment and under a managed drought, while the candidate population would be phenotyped only under one of those environments.

Kumari Nilima、Bartholom¨| J¨|r?me、Kumar Arvind、Cao Tuong-Vi、Bhandari Aditi、Ahmadi Nourollah、frouin Julien

Banasthali UniversityCIRAD||AGAPInternational Rice Research InstituteCIRAD||AGAPInternational Rice Research Institute||Banasthali UniversityCIRAD||AGAPInternational Rice Research Institute

10.1101/482109

农业科学技术发展农业科学研究农作物

Kumari Nilima,Bartholom¨| J¨|r?me,Kumar Arvind,Cao Tuong-Vi,Bhandari Aditi,Ahmadi Nourollah,frouin Julien.Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice[EB/OL].(2025-03-28)[2025-04-28].https://www.biorxiv.org/content/10.1101/482109.点此复制

评论