|国家预印本平台
首页|Transcriptomic profiling of nematode parasites surviving after vaccine exposure

Transcriptomic profiling of nematode parasites surviving after vaccine exposure

Transcriptomic profiling of nematode parasites surviving after vaccine exposure

来源:bioRxiv_logobioRxiv
英文摘要

Abstract Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax? for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins there is potential for selection of nematodes with altered sequence or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax? with worms from control animals. Barbervax? antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of them are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax? antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the vaccine effect. Implications for other potential vaccines for human and veterinary nematodes are discussed.

Smith W. David、Newlands George F. J.、Laing Roz、Hanks Eve、Cotton James A.、Sall¨| Guillaume、Martinelli Axel、Holroyd Nancy、Devaney Eileen、Tracey Alan、Maitland Kirsty、Berriman Matthew、Britton Collette

Moredun Research InstituteMoredun Research InstituteInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowWellcome Trust Sanger Institute, Wellcome Genome CampusINRA - U. Tours, UMR 1282 ISP Infectiologie et Sant¨| Publique, Centre de recherche Val de Loire||Wellcome Trust Sanger Institute, Wellcome Genome CampusWellcome Trust Sanger Institute, Wellcome Genome CampusWellcome Trust Sanger Institute, Wellcome Genome CampusInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowWellcome Trust Sanger Institute, Wellcome Genome CampusInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowWellcome Trust Sanger Institute, Wellcome Genome CampusInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow

10.1101/144980

医学研究方法预防医学基础医学

Smith W. David,Newlands George F. J.,Laing Roz,Hanks Eve,Cotton James A.,Sall¨| Guillaume,Martinelli Axel,Holroyd Nancy,Devaney Eileen,Tracey Alan,Maitland Kirsty,Berriman Matthew,Britton Collette.Transcriptomic profiling of nematode parasites surviving after vaccine exposure[EB/OL].(2025-03-28)[2025-05-04].https://www.biorxiv.org/content/10.1101/144980.点此复制

评论