Concordance of Genetic Variation that Increases Risk for Tourette Syndrome and that Influences its Underlying Neurocircuitry
Concordance of Genetic Variation that Increases Risk for Tourette Syndrome and that Influences its Underlying Neurocircuitry
ABSTRACT BACKGROUNDThere have been considerable recent advances in understanding the genetic architecture of Tourette Syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variations that increase risk for TS - and its main symptom dimensions - influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS. METHODSWe obtained summary statistics for the most recent TS genome-wide association study (GWAS) from the TS Psychiatric Genomics Consortium Working Group (4,644 cases and 8,695 controls) and GWAS of subcortical volumes from the ENIGMA consortium (30,717 individuals). We also undertook analyses using GWAS summary statistics of key symptom factors in TS, namely social disinhibition and symmetry behaviour. SNP Effect Concordance Analysis (SECA) was used to examine genetic pleiotropy - the same SNP affecting two traits - and concordance - the agreement in SNP effect directions across these two traits. In addition, a conditional false discovery rate (FDR) analysis was performed, conditioning the TS risk variants on each of the seven subcortical and the intracranial brain volume GWAS. Linkage Disequilibrium Score Regression (LDSR) was used as validation of SECA. RESULTSSECA revealed significant pleiotropy between TS and putaminal (p=2×10?4) and caudal (p=4×10?4) volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume (p=1×10?3). LDSR lent additional support for the association between TS and thalamic volume (p=5.85×10?2). Furthermore, SECA revealed significant evidence of concordance between the social disinhibition symptom dimension and lower thalamic volume (p=1×10?3), as well as concordance between symmetry behaviour and greater putaminal volume (p=7×10?4). Conditional FDR analysis further revealed novel variants significantly associated with TS (p<8×10?7) when conditioning on intracranial (rs2708146, q=0.046; and rs72853320, q=0.035 and hippocampal (rs1922786, q=0.001 volumes respectively. CONCLUSIONThese data indicate concordance for genetic variations involved in disorder risk and subcortical brain volumes in TS. Further work with larger samples is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.
Scharf Jeremiah M.、Mufford Mary、Cheung Josh、van der Merwe Celia、Ding Linda、Knowles James A.、Lochner Christine、Hibar Derrek P.、Paschou Peristera、van den Heuvel Odile A.、Koen Nastassja、Thompson Paul M.、Chimusa Emile R.、Jahanshad Neda、Stein Dan J.、Ramesar Raj、Psychiatric Genomics Consortium - Tourette Syndrome working group、Groenewold Nynke、Mathews Carol A.、Medland Sarah E.、Dalvie Shareefa
Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Harvard Medical School||Department of Psychiatry, Massachusetts General Hospital||Department of Neurology, Massachusetts General HospitalUCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownImaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern CaliforniaUCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownImaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern CaliforniaDepartment of Psychiatry and the Behavioural Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaUniversity of Stellenbosch, StellenboschImaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern CaliforniaDepartment of Biological Sciences, Purdue UniversityDepartment of Psychiatry, Department of Anatomy & Neurosciences, VU university medical center, Amsterdam NeuroscienceDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town||Groote Schuur HospitalImaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern CaliforniaUCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownImaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern CaliforniaDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town||Groote Schuur HospitalUCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape TownDepartment of Psychiatry, Genetics Institute, University of FloridaQIMR Berghofer Medical Research InstituteDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town||Groote Schuur Hospital
神经病学、精神病学基础医学遗传学
Scharf Jeremiah M.,Mufford Mary,Cheung Josh,van der Merwe Celia,Ding Linda,Knowles James A.,Lochner Christine,Hibar Derrek P.,Paschou Peristera,van den Heuvel Odile A.,Koen Nastassja,Thompson Paul M.,Chimusa Emile R.,Jahanshad Neda,Stein Dan J.,Ramesar Raj,Psychiatric Genomics Consortium - Tourette Syndrome working group,Groenewold Nynke,Mathews Carol A.,Medland Sarah E.,Dalvie Shareefa.Concordance of Genetic Variation that Increases Risk for Tourette Syndrome and that Influences its Underlying Neurocircuitry[EB/OL].(2025-03-28)[2025-04-29].https://www.biorxiv.org/content/10.1101/366294.点此复制
评论