|国家预印本平台
首页|Diminishing neuronal acidification by channelrhodopsins with low proton conduction

Diminishing neuronal acidification by channelrhodopsins with low proton conduction

Diminishing neuronal acidification by channelrhodopsins with low proton conduction

来源:bioRxiv_logobioRxiv
英文摘要

Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems.

Gao Shiqiang、Cohen Adam Ezra、Brooks F. Phil III、Yang Shang、Hayward Rebecca Frank

10.1101/2023.02.07.527404

生物物理学生理学分子生物学

Gao Shiqiang,Cohen Adam Ezra,Brooks F. Phil III,Yang Shang,Hayward Rebecca Frank.Diminishing neuronal acidification by channelrhodopsins with low proton conduction[EB/OL].(2025-03-28)[2025-05-17].https://www.biorxiv.org/content/10.1101/2023.02.07.527404.点此复制

评论