|国家预印本平台
首页|Scaling between stomatal size and density in forest plants

Scaling between stomatal size and density in forest plants

Scaling between stomatal size and density in forest plants

来源:bioRxiv_logobioRxiv
英文摘要

Abstract The size and density of stomatal pores limit the maximum rate of leaf carbon gain and water loss (gmax) in land plants. The limits of gmax due to anatomy, and its constraint by the negative correlation of stomatal size and density at broad phylogenetic scales, has been unclear and controversial. The prevailing hypothesis posits that adaptation to higher gmax is typically constrained by geometry and/or an economic need to reduce the allocation of epidermal area to stomata (stomatal-area minimization), and this would require the evolution of greater numbers of smaller stomata. Another view, supported by the data, is that across plant diversity, epidermal area allocated to guard cells versus other cells can be optimized without major trade-offs, and higher gmax would typically be achieved with a higher allocation of epidermal area to stomata (stomatal-area increase). We tested these hypotheses by comparing their predictions for the structure of the covariance of stomatal size and density across species, applying macroevolutionary models and phylogenetic regression to data for 2408 species of angiosperms, gymnosperms, and ferns from forests worldwide. The observed stomatal size-density scaling and covariance supported the stomatal-area increase hypothesis for high gmax. A higher gmax involves construction costs and maintenance costs that should be considered in models assessing optimal stomatal conductance for predictions of water use, photosynthesis, and water-use efficiency as influences on crop productivity or in Earth System models.

Sack Lawren、Xu Li、Li Mingxu、Zhang Jiahui、de Boer Hugo Jan、Yu Guirui、He Nianpeng、Liu Congcong、Muir Christopher D.、Han Xingguo、Li Ying

Department of Ecology and Evolutionary Biology, University of CaliforniaKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences||University of Chinese Academy of SciencesCopernicus Institute of Sustainable Development, Department of Environmental Sciences, Utrecht UniversityKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences||University of Chinese Academy of SciencesKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences||University of Chinese Academy of Sciences||Institute of Grassland Science, Northeast Normal University, and Key Laboratory of Vegetation Ecology, Ministry of EducationKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences||University of Chinese Academy of SciencesSchool of Life Sciences, University of Hawai?ˉi at M¨?noaState Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

10.1101/2021.04.25.441252

植物学

Sack Lawren,Xu Li,Li Mingxu,Zhang Jiahui,de Boer Hugo Jan,Yu Guirui,He Nianpeng,Liu Congcong,Muir Christopher D.,Han Xingguo,Li Ying.Scaling between stomatal size and density in forest plants[EB/OL].(2025-03-28)[2025-06-12].https://www.biorxiv.org/content/10.1101/2021.04.25.441252.点此复制

评论