Fluorescence visualization of deep-buried hollow organs
Fluorescence visualization of deep-buried hollow organs
Abstract High-definition fluorescence imaging of deep-buried organs is still challenging. Here, we develop bright fluorophores emitting to 1700 nm by enhancing electron donating ability and reducing donor-acceptor distance. In parallel, the heavy water functions as the solvent of the delicately designed fluorophores, effectively reducing the fluorescent signal loss caused by the absorption by water. The near-infrared-II (NIR-II, 900-1880 nm) emission is eventually recovered and extended beyond 1400 nm. Compared with the spectral range beyond 1500 nm, the one beyond 1400 nm gives a more accurate fluorescence visualization of the hollow organs, owing to the absorption-induced scattering suppression. In addition, the intraluminal lesions containing much water are simultaneously negatively stained, leading to a stark contrast for precise diagnosis. Eventually, the intraluminally perfused fluorescent probes are excreted from mice and thus no obvious side effects emerge. This general method can provide new avenues for future biomedical imaging of deep and highly scattering tissues.
Zhang Dan、Ying Yanyun、Zheng Junyan、Li Jin、Yu Xiaoming、Li Yuanyuan、Chen Siyi、Wu Tianxiang、Fan Xiaoxiao、Feng Zhe、Qian Jun
Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women?ˉs Hospital, Zhejiang University School of MedicineKey Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women?ˉs Hospital, Zhejiang University School of MedicineKey Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women?ˉs Hospital, Zhejiang University School of MedicineState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang UniversityKey Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women?ˉs Hospital, Zhejiang University School of MedicineCollege of Veterinary Medicine, Jilin UniversityState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang UniversityState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang UniversityState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang UniversityState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang UniversityState Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University
基础医学生物科学研究方法、生物科学研究技术生物物理学
Zhang Dan,Ying Yanyun,Zheng Junyan,Li Jin,Yu Xiaoming,Li Yuanyuan,Chen Siyi,Wu Tianxiang,Fan Xiaoxiao,Feng Zhe,Qian Jun.Fluorescence visualization of deep-buried hollow organs[EB/OL].(2025-03-28)[2025-05-11].https://www.biorxiv.org/content/10.1101/2022.01.07.475462.点此复制
评论