Bayesian hierarchical models for disease mapping applied to contagious pathologies
Bayesian hierarchical models for disease mapping applied to contagious pathologies
Abstract Disease mapping aims to determine the underlying disease risk from scattered epidemiological data and to represent it on a smoothed colored map. This methodology is based on Bayesian inference and is classically dedicated to non-infectious diseases whose incidence is low and whose cases distribution is spatially (and eventually temporally) structured. Over the last decades, disease mapping has received many major improvements to extend its scope of application: integrating the temporal dimension, dealing with missing data, taking into account various a prioris (environmental and population covariates, assumptions concerning the repartition and the evolution of the risk), dealing with overdispersion, etc. We aim to adapt this approach to rare infectious diseases. In the context of a contagious disease, the outcome of a primary case can in addition generate secondary occurrences of the pathology in a close spatial and temporal neighborhood; this can result in local overdispersion and in higher spatial and temporal dependencies due to direct and/or indirect transmission. We have proposed and tested 60 Bayesian hierarchical models on 400 simulated datasets and bovine tuberculosis real data. This analysis shows the relevance of the CAR (Conditional AutoRegressive) processes to deal with the structure of the risk. We can also conclude that the negative binomial models outperform the Poisson models with a Gaussian noise to handle overdispersion. In addition our study provided relevant maps which are congruent with the real risk (simulated data) and with the knowledge concerning bovine tuberculosis (real data). Author summaryDisease mapping is dedicated to non-infectious diseases whose incidence is low and whose distribution is spatially (and eventually temporally) structured. In this paper, we aim to adapt this approach to rare infectious pathologies. In the context of a contagious disease, the outcome of a primary case can in addition generate secondary occurrences of the pathology in a close spatial and temporal neighborhood, resulting in local overdispersion and in high spatial and temporal dependencies. We thus explored different adapted spatial, temporal and spatiotemporal links and highlight the most adapted to likely risk structures for infectious diseases. We also conclude that the negative binomial models outperform the Poisson models with a Gaussian noise to handle overdispersion. Our study also provided relevant maps which are congruent with the real risk (in case of simulated data) and with the knowledge concerning bovine tuberculosis (when applying to real data). Thus disease mapping appears as a promising way to investigate rare infectious diseases.
Garrido Myriam、Abrial David、Yao Anne-Fran?oise、Coly Sylvain
Centre INRA Auvergne Rh?ne-Alpes, Unit¨| d?ˉ¨|pid¨|miologie des maladies animales et zoonotiquesCentre INRA Auvergne Rh?ne-Alpes, Unit¨| d?ˉ¨|pid¨|miologie des maladies animales et zoonotiquesUniversit¨| Clermon-Auvergne - Laboratoire de Math¨|matiques UMR 6620 - CNRS, Campus des C¨|zeaux, B.P. 80026Centre INRA Auvergne Rh?ne-Alpes, Unit¨| d?ˉ¨|pid¨|miologie des maladies animales et zoonotiques||Universit¨| Clermon-Auvergne - Laboratoire de Math¨|matiques UMR 6620 - CNRS, Campus des C¨|zeaux, B.P. 80026
医学研究方法基础医学生物科学理论、生物科学方法
Garrido Myriam,Abrial David,Yao Anne-Fran?oise,Coly Sylvain.Bayesian hierarchical models for disease mapping applied to contagious pathologies[EB/OL].(2025-03-28)[2025-04-26].https://www.biorxiv.org/content/10.1101/766071.点此复制
评论