|国家预印本平台
首页|On the second anisotropic Cheeger constant and related questions

On the second anisotropic Cheeger constant and related questions

On the second anisotropic Cheeger constant and related questions

来源:Arxiv_logoArxiv
英文摘要

In this paper we study the behavior of the second eigenfunction of the anisotropic $p$-Laplace operator \[ - Q_{p}u:=-\textrm{div} \left(F^{p-1}(\nabla u)F_\xi (\nabla u)\right), \] as $p \to 1^+$, where $F$ is a suitable smooth norm of $\mathbb R^{n}$. Moreover, for any regular set $\Omega$, we define the second anisotropic Cheeger constant as \begin{equation*} h_{2,F}(\Omega):=\inf \left\{ \max\left\{\frac{P_{F}(E_{1})}{|E_{1}|},\frac{P_{F}(E_{2})}{|E_{2}|}\right\},\; E_{1},E_{2}\subset \Omega, E_{1}\cap E_{2}=\emptyset\right\}, \end{equation*} where $P_{F}(E)$ is the anisotropic perimeter of $E$, and study the connection with the second eigenvalue of the anisotropic $p$-Laplacian. Finally, we study the twisted anisotropic $q$-Cheeger constant with a volume constraint.

Gianpaolo Piscitelli

数学

Gianpaolo Piscitelli.On the second anisotropic Cheeger constant and related questions[EB/OL].(2025-03-29)[2025-04-26].https://arxiv.org/abs/2503.23092.点此复制

评论