|国家预印本平台
首页|基于强化学习的缓存策略模型

基于强化学习的缓存策略模型

中文摘要英文摘要

缓存是计算机系统中提升系统性能、优化用户体验的重要技术,合适的缓存策略可以提升缓存命中率,是缓存性能的关键。缓存策略的效果取决于策略能否快速适应变化的用户访问规律,进而实时地逼近理论最优解。近年来,缓存策略优化相关方法的研究集中在强化学习方面。本文首先介绍和缓存在信息系统内的应用背景,然后介绍了近期针对缓存策略优化的有关研究和技术,最后介绍了评估缓存策略的方法和指标。

ache is a key component in mordern computational systems, since it has direct impact on performance. A proper caching policy improves the effectiveness of the cache, and is the key to performance optimization. The optimal caching policy must be able to adapt to the ever changing workload the system receives. Recent advancements in caching strategy design focuses on methods based on Reinforcement Learning (RL). This article first introduces the status-quo of cache\'s application in information systems. Then, we introduce the recently published works on caching strategy optimization based on RL. Last but not least, this article talk about the evaluation methods and metrics for caching strategies.

左钰、商彦磊

北京邮电大学计算机学院,北京 100876北京邮电大学计算机学院,北京 100876

计算技术、计算机技术

缓存策略强化学习存储

aching Strategy Reinforcement Learning Storage

左钰,商彦磊.基于强化学习的缓存策略模型[EB/OL].(2025-04-01)[2025-06-17].http://www.paper.edu.cn/releasepaper/content/202504-2.点此复制

评论