|国家预印本平台
首页|基于ResNet的伪造语音鉴别研究

基于ResNet的伪造语音鉴别研究

中文摘要英文摘要

现有的伪造语音鉴别系统(ASV)中的防伪造方法在面对未见过的攻击时,泛化能力仍显不足。Res2Net方法在一个块内设计了特征组之间的类似残差连接,这增加了可能的感受野,提高了系统检测的泛化能力。然而,这种类似残差的连接是通过特征组之间的直接相加实现的,没有考虑通道优先级。不同通道的信息对伪造线索的贡献可能并不相等,在将信息传递给下一个特征组之前,应先抑制相关性较低的通道,从而使系统能更好地泛化到未见过的攻击。基于此,本文提出了新颖的通道式门控Res2Net,对Res2Net进行了改进,在特征组之间的连接中引入了通道式门控机制,在ASVspoof 2019逻辑访问(LA)数据集上进行了实验结果验证,证明了该方法的有效性。

he anti-spoofing methods in existing Automatic Speaker Verification (ASV) systems still have insufficient generalizability when facing unseen attacks. The Res2Net approach designs a residual-like connection between feature groups within one block, which increases the possible receptive fields and improves the system\'s detection generalizability. However, such a residual-like connection is performed by a direct addition between feature groups without channelwise priority. The information across channels may not contribute to spoofing cues equally, and the less relevant channels are expected to be suppressed before adding onto the next feature group, so that the system can generalize better to unseen attacks. Based on this, this paper proposes a novel channel-wise gated Res2Net, which modifies Res2Net to enable a channel-wise gating mechanism in the connection between feature groups, and verifies the effectiveness of the method through experimental results on the ASVspoof 2019 Logical Access (LA) dataset.

赵怡、刘刚

北京邮电大学人工智能学院,北京 100876北京邮电大学人工智能学院,北京 100876

计算技术、计算机技术

伪造语音鉴别检测,Res2Net,ASVspoof 2019逻辑访问(LA)

Spoofing speech detection Res2Net ASVspoof 2019 Logical Access (LA)

赵怡,刘刚.基于ResNet的伪造语音鉴别研究[EB/OL].(2025-04-03)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202504-16.点此复制

评论