复杂动态场景下移动机器人避障算法
移动机器人在环境未知或先验信息较少的动态环境中实时避障是确保其自主导航安全与高效性的关键。然而,传统速度障碍法(VO)性能高度依赖传感器对障碍物的精确检测,而传感器数据往往存在噪声、误差等问题,导致避障效率降低。为此,本文提出一种结合动态轨迹预测的速度障碍算法。首先,构建速度障碍模型以实现实时避障;其次,通过卡尔曼滤波预测障碍物轨迹,优化速度障碍区域;最后,设计速度优化函数,引入预期碰撞时间、速度平滑约束、方向约束及动力学约束,确保运动的安全性、平滑性与目标导向性。仿真实验结果表明,所提算法在任务完成时间、路径优化及运动效率等方面均显著优于传统方法,验证了其在动态环境中的有效性与鲁棒性。
Real-time obstacle avoidance for mobile robots in dynamic environments with unknown or limited prior information is crucial to ensuring the safety and efficiency of autonomous navigation. However, the performance of traditional Velocity Obstacle (VO) methods heavily relies on the precise detection of obstacles by sensors, while sensor data often suffer from noise and errors, leading to reduced obstacle avoidance efficiency. To address these issues, this paper proposes a velocity obstacle algorithm integrated with dynamic trajectory prediction. Firstly, a velocity obstacle model is constructed to achieve real-time obstacle avoidance. Secondly, the Kalman filter is employed to predict obstacle trajectories, optimizing the velocity obstacle region. Finally, a velocity optimization function is designed, incorporating expected collision time, velocity smoothing constraints, directional constraints, and dynamic constraints to ensure safety, smoothness, and goal-oriented motion. Simulation results demonstrate that the proposed algorithm significantly outperforms traditional methods in terms of task completion time, path optimization, and motion efficiency, validating its effectiveness and robustness in dynamic environments.
马力、刘晓平、吴少波
北京邮电大学智能工程与自动化学院,北京 100876北京邮电大学智能工程与自动化学院,北京 100876北京邮电大学智能工程与自动化学院,北京 100876
自动化技术、自动化技术设备计算技术、计算机技术
速度障碍动态轨迹预测速度优化
Velocity ObstacleDynamic Trajectory PredictionVelocity Optimization
马力,刘晓平,吴少波.复杂动态场景下移动机器人避障算法[EB/OL].(2025-04-03)[2025-05-05].http://www.paper.edu.cn/releasepaper/content/202504-29.点此复制
评论