一种融合降噪自编码和对比学习的时间序列表示学习框架
时间序列分类任务中,传统监督学习方法因标签数据稀缺面临性能瓶颈。本文提出融合降噪自编码与对比学习的自监督表示学习框架,有效缓解对标签数据的依赖。针对现有自监督表示学习方法存在的表示维度高、线性可分性差及下游任务精度不足三大缺陷,本文提出了一种融合降噪自编码和对比学习的时间序列表示学习框架,该框架将降噪自编码的输入重建任务和基于TWIST损失的对比学习任务融合进行优势互补,共同学习低维和高度线性可分的时间序列表示.本文采用三个不同领域的真实数据集验证分类性能,在线性分类任务中,本文方法相对基线方法在三个数据集上取得了1.19%至5.27%的准确率提升和1.41%至2.07%的宏F1分数提升;在半监督分类任务中,本文方法仅使用10%的有标签数据即可达到与使用全部有标签数据训练的有监督模型相当的性能.
In time series classification tasks, the lack of labeled data presents a challenge to traditional supervised deep learning methods, and self supervised representation learning can fully utilize unlabeled data. However, self-supervised representation learning for time series has not been fully studied, and existing methods have at least one of the following three shortcomings: high representation dimension, insufficient linear separability, and inadequate accuracy in downstream classification tasks. We propose a novel time series representation learning framework that integrates denoising auto-encoding with contrastive learning to address these issues. The proposed method fuses the input reconstruction task of denoising autoencoders and the contrastive learning task based on TWIST loss into a unified framework which can jointly learn low-dimensional and highly linearly separable representations of time series. The effectiveness of the proposed method has been validated through experimental results obtained from real datasets across three distinct fields. Specifically, compared to the baseline method, the proposed method demonstrated an accuracy improvement ranging from 1.19% to 5.27% and a macroscopic F1 score improvement of 1.41% to 2.07% in linear classification tasks. In semi supervised classification tasks, even with only 10% labeled data, our method exhibits performance comparable to supervised models trained with all labeled data.
刘海洋、程帅卿
北京交通大学 计算机与信息技术学院, 北京 100044北京交通大学 计算机与信息技术学院, 北京 100044
计算技术、计算机技术
时间序列表示学习自监督降噪自编码对比学习分类
time seriesrepresentation learningself-supervisiondenoising auto-encodingcontrastive learningclassification
刘海洋,程帅卿.一种融合降噪自编码和对比学习的时间序列表示学习框架[EB/OL].(2025-04-07)[2025-04-30].http://www.paper.edu.cn/releasepaper/content/202504-46.点此复制
评论