|国家预印本平台
首页|Error bound for the asymptotic expansion of the Hartman-Watson integral

Error bound for the asymptotic expansion of the Hartman-Watson integral

Error bound for the asymptotic expansion of the Hartman-Watson integral

来源:Arxiv_logoArxiv
英文摘要

This note gives a bound on the error of the leading term of the $t\to 0$ asymptotic expansion of the Hartman-Watson distribution $\theta(r,t)$ in the regime $rt=\rho$ constant. The leading order term has the form $\theta(\rho/t,t)=\frac{1}{2\pi t}e^{-\frac{1}{t} (F(\rho)-\pi^2/2)} G(\rho) (1 + \vartheta(t,\rho))$, where the error term is bounded uniformly over $\rho$ as $|\vartheta(t,\rho)|\leq \frac{1}{70}t$.

Dan Pirjol

数学

Dan Pirjol.Error bound for the asymptotic expansion of the Hartman-Watson integral[EB/OL].(2025-04-07)[2025-07-02].https://arxiv.org/abs/2504.04992.点此复制

评论