Complete Classification of the Symmetry Group of $L_p$-Minkowski Problem on the Sphere
Complete Classification of the Symmetry Group of $L_p$-Minkowski Problem on the Sphere
In Convex Geometry, a core topic is the $L_p$-Minkowski problem \begin{equation}\label{e0.1} \det(\nabla^2h+hI)=fh^{p-1}, \ \ \forall X\in{\mathbb{S}}^n, \ \ \forall p\in \mathbb{R} \end{equation} of Monge-Amp\`{e}re type. By the transformation $u(x)=h(X)\sqrt{1+|x|^2}$ and semi-spherical projection, equation \eqref{e0.1} can be reformulated by the Monge-Amp\`{e}re type equation \begin{equation}\label{e0.2} \det D^2u=(1+|x|^2)^{-\frac{p+n+1}{2}}u^{p-1}, \ \ \forall x\in{\mathbb{R}}^n, \ \ \forall p\in \mathbb{R} \end{equation} on the Euclidean space. In this paper, we will firstly determine the symmetric groups of $n$-dimensional fully nonlinear equation \eqref{e0.2} without asymptotic growth assumption. After proving several key resolution lemmas, we thus completely classify the symmetric groups of the $L_p$-Minkowski problem. Our method develops the Lie theory to fully nonlinear PDEs in Convex Geometry.
Huan-Jie Chen、Shi-Zhong Du
数学
Huan-Jie Chen,Shi-Zhong Du.Complete Classification of the Symmetry Group of $L_p$-Minkowski Problem on the Sphere[EB/OL].(2025-04-03)[2025-05-24].https://arxiv.org/abs/2504.02661.点此复制
评论