|国家预印本平台
首页|A Spectral Lower Bound on the Chromatic Number using $p$-Energy

A Spectral Lower Bound on the Chromatic Number using $p$-Energy

A Spectral Lower Bound on the Chromatic Number using $p$-Energy

来源:Arxiv_logoArxiv
英文摘要

Let $A_G $ be the adjacency matrix of a simple graph $ G $, and let $ \chi(G) $, $ \chi_q(G) $, and $ \chi_f(G) $ denote its chromatic number, quantum chromatic number, and fractional chromatic number, respectively. For $ p \geq 0 $, we define the positive and negative $ p $-energies of $ G $ as $$ \mathcal{E}_p^+(G) = \sum_{\lambda_i > 0} \lambda_i^p, \quad \mathcal{E}_p^-(G) = \sum_{\lambda_i < 0} |\lambda_i|^p, $$ where $ \lambda_1 \geq \cdots \geq \lambda_n $ are the eigenvalues of $A_G $. We prove that for all $ p \geq 0 $, $$ \min\left\{\chi(G), \chi_q(G), \chi_f(G)\right\} \geq 1 + \max\left\{ \frac{\mathcal{E}_p^+(G)}{\mathcal{E}_p^-(G)}, \frac{\mathcal{E}_p^-(G)}{\mathcal{E}_p^+(G)} \right\}^{\frac{1}{|p - 1|}}. $$ This result unifies and strengthens a series of existing bounds corresponding to the cases $ p \in \{0, 2, \infty\} $. In particular, the case $ p = 0 $ yields the inertia bound $$ \chi_f(G) \geq 1 + \max\left\{\frac{n^+}{n^-}, \frac{n^-}{n^+}\right\}, $$ where $ (n^+, n^0, n^-) $ is the inertia of $A_G $, thus resolving a conjecture of Elphick and Wocjan. We also demonstrate that for certain graphs, non-integer values of $ p $ provide sharper lower bounds than existing spectral bounds. As an example, we determine $ \chi_q(G) $ for the Tilley graph, which cannot be achieved using existing $ p $-energy bounds.

Clive Elphick、Shengtong Zhang、Quanyu Tang

数学

Clive Elphick,Shengtong Zhang,Quanyu Tang.A Spectral Lower Bound on the Chromatic Number using $p$-Energy[EB/OL].(2025-04-01)[2025-04-28].https://arxiv.org/abs/2504.01295.点此复制

评论