Point-based Instance Completion with Scene Constraints
Point-based Instance Completion with Scene Constraints
Recent point-based object completion methods have demonstrated the ability to accurately recover the missing geometry of partially observed objects. However, these approaches are not well-suited for completing objects within a scene, as they do not consider known scene constraints (e.g., other observed surfaces) in their completions and further expect the partial input to be in a canonical coordinate system, which does not hold for objects within scenes. While instance scene completion methods have been proposed for completing objects within a scene, they lag behind point-based object completion methods in terms of object completion quality and still do not consider known scene constraints during completion. To overcome these limitations, we propose a point cloud-based instance completion model that can robustly complete objects at arbitrary scales and pose in the scene. To enable reasoning at the scene level, we introduce a sparse set of scene constraints represented as point clouds and integrate them into our completion model via a cross-attention mechanism. To evaluate the instance scene completion task on indoor scenes, we further build a new dataset called ScanWCF, which contains labeled partial scans as well as aligned ground truth scene completions that are watertight and collision-free. Through several experiments, we demonstrate that our method achieves improved fidelity to partial scans, higher completion quality, and greater plausibility over existing state-of-the-art methods.
Wesley Khademi、Li Fuxin
计算技术、计算机技术
Wesley Khademi,Li Fuxin.Point-based Instance Completion with Scene Constraints[EB/OL].(2025-04-08)[2025-04-26].https://arxiv.org/abs/2504.05698.点此复制
评论