|国家预印本平台
首页|基于频域变换和Transformer的动检数据异常分类算法研究

基于频域变换和Transformer的动检数据异常分类算法研究

中文摘要英文摘要

轨道动检数据是高铁轨道综合检测车为监测轨道状态而定期采集的多维时序数据,由于采集设备、气候等复杂因素的影响,采集的动检数据会存在各种数据异常,即使同一种异常表现出的数据特征也存在差异,而通过人工判定异常类别工作量大且存在误差,并影响后续数据挖掘和利用。从多维动检数据属性间的时频相关性出发,本文提出了一种结合自适应频域变换和双Transformer编码器的动检数据异常分类模型AFFT-Dformer。设计了AFFT(Adaptive Fast Fourier Transform)模块,去除高频噪声,增强了数据的特征表示,采用双Transformer编码器,捕捉数据通道和时序维度特征。在现场动检数据集上的实验表明,模型可实现五种异常数据的分类,分类准确率达到92\%。同时,我们也并在四个公共数据集上进行了实验,验证了提出的AFFT-Dformer在时序数据分类上的泛化性。

Railway dynamic inspection data is the multi-dimensional time-series data collec-\\ted periodically by high-speed railway comprehensive inspection vehicle to monitor the track-\\status. Due to the influence of collection equipment, climate and other complex factors, there are various data anomalies in the collected dynamic inspection data, and even the manual de-\\termination of anomaly categories is laborious and erroneous. The data anomalies affects the subsequent data mining and utilisation. Starting from the time-frequency correlation between the attributes of multi-dimensional motion detection data, this paper proposes an anomaly cl-\\assification model AFFT-Dformer that combines the adaptive frequency domain transform m-\\odule and the double Transformer encoder. The Adaptive Fast Fourier Transform (AFFT) m-\\odule removes the high-frequency noise and enhance the data representation. The dual Trans-\\former encoders module captures data channel and timing dimension features. Experiment on the field motion detection dataset show that the AFFT-Dformer can classify five types of abn-\\ormal data with a classification accuracy of 92\%. Meanwhile, we also conducted experiments on the four public datasets to validate the generalisability of the proposed AFFT-Dformer for time-series data classification.

张一弛、尹辉

北京交通大学计算机科学与技术学院,北京 100044北京交通大学计算机科学与技术学院,北京 100044

计算技术、计算机技术

计算机科学技术动检数据时间序列分类深度学习

omputer Science and TechnologyRailway Dynamic Inspection DataTime Se-\\ries ClassificationDeep Learning

张一弛,尹辉.基于频域变换和Transformer的动检数据异常分类算法研究[EB/OL].(2025-04-10)[2025-05-28].http://www.paper.edu.cn/releasepaper/content/202504-91.点此复制

评论