基于车辆瞬间运动状态的1-M轨迹预测模型
在自动驾驶和车联网应用中,车辆轨迹预测起关键作用。当前基于深度学习的轨迹预测框架,均对输入数据有严苛的要求,需要固定长度、间隔的轨迹序列作为输入,这使得模型在实际应用时,面对不完整、不规则的轨迹数据难以起到预期的预测效果。为了解决这一问题,本文提出了一种基于车辆瞬间运动状态的1-M轨迹预测模型。该模型将车辆的瞬间运动状态结合道路环境编码为高维空间的特征向量,使用皮尔逊系数建立同一轨迹临近时刻的特征向量的相关性,通过神经常微分方程求解器拟合特征向量关于时间的导函数,实现基于1帧的车辆轨迹数据预测出车辆后续1s内任意时刻的运动轨迹。该模型能够用于将一段不规则的轨迹序列补充完整用于下游任务,也能够对刚进入视界范围内的车辆进行初步的轨迹预测。实验结果表明,该模型在CitySIM-Intersection A数据集上,直线轨迹1s内的平均距离误差(ADE)为0.16m,最终距离误差(FDE)为0.3m;曲线轨迹1s内的ADE为0.21m,FDE为0.44m,是一种有效的轨迹预测模型。
In the applications of autonomous driving and V2X, vehicle trajectory prediction plays a crucial role.The current trajectory prediction frameworks based on deep learning all have strict requirements for the input data, which needs trajectory sequences with fixed lengths and intervals as inputs. This makes it difficult for the models to achieve the expected prediction results when facing incomplete or irregular trajectory data in practical applications.To address this issue, this paper proposes a 1to many trajectory prediction model based on the instantaneous motion state of the vehicle. This model encodes the instantaneous motion state of the vehicle combined with the road environment into a feature vector in a high-dimensional space and uses the Pearson correlation coefficient to establish the correlation between the feature vectors at adjacent moments of the same trajectory. Through a neural ordinary differential equation (ODE) solver to fits the derivative function of the feature vector with respect to time.The model can predict the vehicle\'s motion trajectory at any moment within the subsequent 1 second based on the vehicle trajectory data of one frame. The experimental results show that, on the CitySIM-Intersection A dataset, for the straight trajectory of this model, the average distance error(ADE) within 1 second is 0.16 meters and the final distance error (FDE) is 0.3 meters; for the curved trajectory, the ADE within 1 second is 0.21 meters and the FDE is 0.44 meters. It is an effective trajectory prediction model.
黄文浩、高博
北京交通大学高速铁路网络管理教育部工程研究中心,北京 100044;北京交通大学计算机科学与技术学院,北京 100044北京交通大学高速铁路网络管理教育部工程研究中心,北京 100044;北京交通大学计算机科学与技术学院,北京 100044
计算技术、计算机技术自动化技术、自动化技术设备
人工智能轨迹预测神经常微分方程
rtificial Intelligencetrajectory predictionneural ordinary differential equation
黄文浩,高博.基于车辆瞬间运动状态的1-M轨迹预测模型[EB/OL].(2025-04-10)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/202504-87.点此复制
评论