|国家预印本平台
首页|基于双增强图神经网络的会话推荐

基于双增强图神经网络的会话推荐

中文摘要英文摘要

目前会话推荐中的图模型主要基于物品的转换模式,建模物品间的相似性和依赖关系。然而,现有方法仍存在局限。首先,现有的图结构在更新物品嵌入时完全依赖物品共现关系,并未实现以用户为中心,缺乏对用户导向的显式建模。其次,传统图结构通常只能建模相邻物品之间的转移关系,难以捕捉会话中物品的远距离依赖。对此,本文提出了基于双增强图神经网络(Dual-Augmented Graph Neural Networks, DAGNN)的会话推荐算法。DAGNN 由用户-物品交互图和超会话连接图组成。用户-物品交互图基于物品转移关系,将用户作为中心节点,与多个物品建立直接连接,使 GNN 传播时能够注入用户的个性化信息,从而影响所有相关物品。超会话连接图通过缩短不同节点之间的相对路径,使得远距离依赖也能高效传播,从而增强整体建模能力。在三个公开基准数据集上的实验验证了本模型的有效性。

In session-based recommendation, graph-based models primarily rely on item transition patterns to capture item similarity and dependency relationships. However, existing methods still have limitations. First, current graph structures update item embeddings solely based on item co-occurrence relationships, lacking user-centered modeling and failing to explicitly incorporate user-oriented information. Second, traditional graph structures typically model only the transitions between adjacent items, making it difficult to capture long-range dependencies within sessions. To address these issues, this paper proposes a session-based recommendation algorithm based on Dual-Augmented Graph Neural Networks (DAGNN). DAGNN consists of a user-item interaction graph and a hyper-session connection graph. The user-item interaction graph is constructed based on item transitions, with users as central nodes directly connected to multiple items. This allows GNN propagation to incorporate user-specific information, influencing all relevant items. Meanwhile, the hyper-session connection graph shortens the relative paths between different nodes, enabling efficient propagation of long-range dependencies and enhancing the overall modeling capability. Experiments on three public benchmark datasets demonstrate the effectiveness of the proposed model.

唐韶杰、徐前方

北京邮电大学 人工智能学院,北京 100876, 中国 北京邮电大学 人工智能学院,北京 100876, 中国

计算技术、计算机技术

人工智能会话推荐图神经网络个性化推荐

artificial intelligencesession-based recommendationgraph neural networkpersonalized recommendation

唐韶杰,徐前方.基于双增强图神经网络的会话推荐[EB/OL].(2025-04-11)[2025-06-08].http://www.paper.edu.cn/releasepaper/content/202504-97.点此复制

评论