The row left rank of quaternion unit gain graphs in terms of pendant vertices
The row left rank of quaternion unit gain graphs in terms of pendant vertices
Let $\widetilde{G}=(G,U(\mathbb{Q}),\varphi)$ be a quaternion unit gain graph (or $U(\mathbb{Q})$-gain graph), where $G$ is the underlying graph of $\widetilde{G}$, $U(\mathbb{Q})=\{q\in \mathbb{Q}: |q|=1\}$ and $\varphi:\overrightarrow{E}\rightarrow U(\mathbb{Q})$ is the gain function such that $\varphi(e_{ij})=\varphi(e_{ji})^{-1}=\overline{\varphi(e_{ji})}$ for any adjacent vertices $v_{i}$ and $v_{j}$. Let $A(\widetilde{G})$ be the adjacency matrix of $\widetilde{G}$ and let $r(\widetilde{G})$ be the row left rank of $\widetilde{G}$. In this paper, we prove some lower bounds on the row left rank of $U(\mathbb{Q})$-gain graphs in terms of pendant vertices. All corresponding extremal graphs are characterized.
Yong Lu、Qi Shen
数学
Yong Lu,Qi Shen.The row left rank of quaternion unit gain graphs in terms of pendant vertices[EB/OL].(2025-04-10)[2025-06-29].https://arxiv.org/abs/2504.07784.点此复制
评论