|国家预印本平台
首页|Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation

Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation

Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation

来源:Arxiv_logoArxiv
英文摘要

Large language models (LLMs) have transformed various sectors, including education, finance, and medicine, by enhancing content generation and decision-making processes. However, their integration into the medical field is cautious due to hallucinations, instances where generated content deviates from factual accuracy, potentially leading to adverse outcomes. To address this, we introduce Hyper-RAG, a hypergraph-driven Retrieval-Augmented Generation method that comprehensively captures both pairwise and beyond-pairwise correlations in domain-specific knowledge, thereby mitigating hallucinations. Experiments on the NeurologyCrop dataset with six prominent LLMs demonstrated that Hyper-RAG improves accuracy by an average of 12.3% over direct LLM use and outperforms Graph RAG and Light RAG by 6.3% and 6.0%, respectively. Additionally, Hyper-RAG maintained stable performance with increasing query complexity, unlike existing methods which declined. Further validation across nine diverse datasets showed a 35.5% performance improvement over Light RAG using a selection-based assessment. The lightweight variant, Hyper-RAG-Lite, achieved twice the retrieval speed and a 3.3% performance boost compared with Light RAG. These results confirm Hyper-RAG's effectiveness in enhancing LLM reliability and reducing hallucinations, making it a robust solution for high-stakes applications like medical diagnostics.

Yifan Feng、Hao Hu、Xingliang Hou、Shiquan Liu、Shihui Ying、Shaoyi Du、Han Hu、Yue Gao

神经病学、精神病学医学研究方法

Yifan Feng,Hao Hu,Xingliang Hou,Shiquan Liu,Shihui Ying,Shaoyi Du,Han Hu,Yue Gao.Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation[EB/OL].(2025-03-30)[2025-05-25].https://arxiv.org/abs/2504.08758.点此复制

评论