Capillary Christoffel-Minkowski problem
Capillary Christoffel-Minkowski problem
The result of Guan and Ma (Invent. Math. 151 (2003)) states that if $\phi^{-1/k} : \mathbb{S}^n \to (0,\infty)$ is spherically convex, then $\phi$ arises as the $\sigma_k$ curvature (the $k$-th elementary symmetric function of the principal radii of curvature) of a strictly convex hypersurface. In this paper, we establish an analogous result in the capillary setting in the half-space for $\theta\in(0,\pi/2)$: if $\phi^{-1/k} : \mathcal{C}_{\theta} \to (0,\infty)$ is a capillary function and spherically convex, then $\phi$ is the $\sigma_k$ curvature of a strictly convex capillary hypersurface.
Yingxiang Hu、Mohammad N. Ivaki、Julian Scheuer
数学
Yingxiang Hu,Mohammad N. Ivaki,Julian Scheuer.Capillary Christoffel-Minkowski problem[EB/OL].(2025-04-12)[2025-06-03].https://arxiv.org/abs/2504.09320.点此复制
评论