Ember: A Compiler for Efficient Embedding Operations on Decoupled Access-Execute Architectures
Ember: A Compiler for Efficient Embedding Operations on Decoupled Access-Execute Architectures
Irregular embedding lookups are a critical bottleneck in recommender models, sparse large language models, and graph learning models. In this paper, we first demonstrate that, by offloading these lookups to specialized access units, Decoupled Access-Execute (DAE) processors achieve 2.6$\times$ higher performance and 6.4$\times$ higher performance/watt than GPUs on end-to-end models. Then, we propose the Ember compiler for automatically generating optimized DAE code from PyTorch and TensorFlow. Conversely from other DAE compilers, Ember features multiple intermediate representations specifically designed for different optimization levels. In this way, Ember can implement all optimizations to match the performance of hand-written code, unlocking the full potential of DAE architectures at scale.
Marco Siracusa、Olivia Hsu、Victor Soria-Pardos、Joshua Randall、Arnaud Grasset、Eric Biscondi、Doug Joseph、Randy Allen、Fredrik Kjolstad、Miquel Moretó Planas、Adrià Armejach
Barcelona Supercomputing CenterStanford UniversityBarcelona Supercomputing CenterArmArmArmArmBarcelona Supercomputing CenterStanford UniversityBarcelona Supercomputing CenterBarcelona Supercomputing Center
计算技术、计算机技术
Marco Siracusa,Olivia Hsu,Victor Soria-Pardos,Joshua Randall,Arnaud Grasset,Eric Biscondi,Doug Joseph,Randy Allen,Fredrik Kjolstad,Miquel Moretó Planas,Adrià Armejach.Ember: A Compiler for Efficient Embedding Operations on Decoupled Access-Execute Architectures[EB/OL].(2025-04-14)[2025-05-28].https://arxiv.org/abs/2504.09870.点此复制
评论