Advancing RFI-Detection in Radio Astronomy with Liquid State Machines
Advancing RFI-Detection in Radio Astronomy with Liquid State Machines
Radio Frequency Interference (RFI) from anthropogenic radio sources poses significant challenges to current and future radio telescopes. Contemporary approaches to detecting RFI treat the task as a semantic segmentation problem on radio telescope spectrograms. Typically, complex heuristic algorithms handle this task of `flagging' in combination with manual labeling (in the most difficult cases). While recent machine-learning approaches have demonstrated high accuracy, they often fail to meet the stringent operational requirements of modern radio observatories. Owing to their inherently time-varying nature, spiking neural networks (SNNs) are a promising alternative method to RFI-detection by utilizing the time-varying nature of the spectrographic source data. In this work, we apply Liquid State Machines (LSMs), a class of spiking neural networks, to RFI-detection. We employ second-order Leaky Integrate-and-Fire (LiF) neurons, marking the first use of this architecture and neuron type for RFI-detection. We test three encoding methods and three increasingly complex readout layers, including a transformer decoder head, providing a hybrid of SNN and ANN techniques. Our methods extend LSMs beyond conventional classification tasks to fine-grained spatio-temporal segmentation. We train LSMs on simulated data derived from the Hyrogen Epoch of Reionization Array (HERA), a known benchmark for RFI-detection. Our model achieves a per-pixel accuracy of 98% and an F1-score of 0.743, demonstrating competitive performance on this highly challenging task. This work expands the sophistication of SNN techniques and architectures applied to RFI-detection, and highlights the effectiveness of LSMs in handling fine-grained, complex, spatio-temporal signal-processing tasks.
Nicholas J Pritchard、Andreas Wicenec、Mohammed Bennamoun、Richard Dodson
天文学无线电设备、电信设备
Nicholas J Pritchard,Andreas Wicenec,Mohammed Bennamoun,Richard Dodson.Advancing RFI-Detection in Radio Astronomy with Liquid State Machines[EB/OL].(2025-04-13)[2025-04-24].https://arxiv.org/abs/2504.09796.点此复制
评论