|国家预印本平台
首页|Subelliptic and Maximal $L^p$ Estimates for the Complex Green Operator on non-pseudoconvex domains

Subelliptic and Maximal $L^p$ Estimates for the Complex Green Operator on non-pseudoconvex domains

Subelliptic and Maximal $L^p$ Estimates for the Complex Green Operator on non-pseudoconvex domains

来源:Arxiv_logoArxiv
英文摘要

We prove subelliptic estimates for ethe complex Green operator $ K_q $ at a specific level $ q $ of the $ \bar\partial_b $-complex, defined on a not necessarily pseudoconvex CR manifold satisfying the commutator finite type condition. Additionally, we obtain maximal $ L^p $ estimates for $ K_q $ by considering closed-range estimates. Our results apply to a family of manifolds that includes a class of weak $ Y(q) $ manifolds satisfying the condition $ D(q) $. We employ a microlocal decomposition and Calder\'on-Zygmund theory to obtain subelliptic and maximal-$ L^p $ estimates, respectively.

Joel Coacalle

数学

Joel Coacalle.Subelliptic and Maximal $L^p$ Estimates for the Complex Green Operator on non-pseudoconvex domains[EB/OL].(2025-04-14)[2025-06-03].https://arxiv.org/abs/2504.10614.点此复制

评论