Learning with Positive and Imperfect Unlabeled Data
Learning with Positive and Imperfect Unlabeled Data
We study the problem of learning binary classifiers from positive and unlabeled data when the unlabeled data distribution is shifted, which we call Positive and Imperfect Unlabeled (PIU) Learning. In the absence of covariate shifts, i.e., with perfect unlabeled data, Denis (1998) reduced this problem to learning under Massart noise; however, that reduction fails under even slight shifts. Our main results on PIU learning are the characterizations of the sample complexity of PIU learning and a computationally and sample-efficient algorithm achieving a misclassification error $\varepsilon$. We further show that our results lead to new algorithms for several related problems. 1. Learning from smooth distributions: We give algorithms that learn interesting concept classes from only positive samples under smooth feature distributions, bypassing known existing impossibility results and contributing to recent advances in smoothened learning (Haghtalab et al, J.ACM'24) (Chandrasekaran et al., COLT'24). 2. Learning with a list of unlabeled distributions: We design new algorithms that apply to a broad class of concept classes under the assumption that we are given a list of unlabeled distributions, one of which--unknown to the learner--is $O(1)$-close to the true feature distribution. 3. Estimation in the presence of unknown truncation: We give the first polynomial sample and time algorithm for estimating the parameters of an exponential family distribution from samples truncated to an unknown set approximable by polynomials in $L_1$-norm. This improves the algorithm by Lee et al. (FOCS'24) that requires approximation in $L_2$-norm. 4. Detecting truncation: We present new algorithms for detecting whether given samples have been truncated (or not) for a broad class of non-product distributions, including non-product distributions, improving the algorithm by De et al. (STOC'24).
Jane H. Lee、Anay Mehrotra、Manolis Zampetakis
计算技术、计算机技术
Jane H. Lee,Anay Mehrotra,Manolis Zampetakis.Learning with Positive and Imperfect Unlabeled Data[EB/OL].(2025-04-14)[2025-04-26].https://arxiv.org/abs/2504.10428.点此复制
评论