|国家预印本平台
首页|基于正交分级融合的多模态甲状腺滤泡癌分类算法

基于正交分级融合的多模态甲状腺滤泡癌分类算法

中文摘要英文摘要

甲状腺滤泡性肿瘤包含恶性甲状腺滤泡癌与良性滤泡性腺瘤两类。由于二者细胞学特征高度相似,临床鉴别诊断甲状腺滤泡性肿瘤与良性滤泡性腺瘤仍存在显著挑战,而精准分类对改善患者治疗、预防癌症风险至关重要。尽管现有深度学习模型在甲状腺结节良恶性分类中表现优异,但其对甲状腺滤泡性肿瘤与良性滤泡性腺瘤的区分能力有限。本文提出一种基于特征层融合的多模态深度学习模型用于甲状腺滤泡癌与良性腺瘤的术前无风险诊断,并提出一种全新的基于分级融合策略与模态正交约束的多模态融合策略,促进不同模态的信息互补与融合。本模型在甲状腺滤泡癌分类任务上准确率达到92.31%。优于目前单模态与双模态融合的分类结果,达到临床可用的水平。

hyroid follicular neoplasms encompass two categories: malignant thyroid follicular carcinoma and benign follicular adenoma. Due to their highly similar cytological characteristics, significant challenges remain in clinically differentiating thyroid follicular neoplasms from benign follicular adenomas, while accurate classification is crucial for improving patient treatment and preventing cancer risks. Although existing deep learning models have demonstrated excellent performance in benign-malignant classification of thyroid nodules, their ability to distinguish between thyroid follicular carcinoma and benign follicular adenoma remains limited. This paper proposes a feature-level fusion-based multimodal deep learning model for preoperative non-invasive diagnosis of thyroid follicular carcinoma and benign adenoma. We introduce a novel multimodal fusion strategy incorporating hierarchical fusion and modal orthogonality constraints, facilitating information complementarity and integration across different modalities. The proposed model achieved an accuracy of 92.31% sin thyroid follicular carcinoma classification tasks, outperforming current single-modal and dual-modal fusion approaches, reaching clinically applicable standards.

马鑫、李书芳

北京邮电大学信息与通信工程学院,北京 100876北京邮电大学信息与通信工程学院,北京 100876

肿瘤学医学研究方法计算技术、计算机技术

深度学习甲状腺滤泡癌多模态融合超声影像处理

eep LearningThyroid Follicular CarcinomaMultimodal FusionUltrasound Image Processing

马鑫,李书芳.基于正交分级融合的多模态甲状腺滤泡癌分类算法[EB/OL].(2025-04-18)[2025-05-10].http://www.paper.edu.cn/releasepaper/content/202504-170.点此复制

评论