基于粒子群算法的电磁场逆问题优化研究
电磁场逆问题在多领域应用广泛,却因高度非线性与不适定性,给传统求解方法带来挑战。本文聚焦于此,深入研究粒子群算法在电磁场逆问题求解中的应用。通过构建适配模型,确定搜索空间与参数范围,完成粒子群初始化,利用适应度函数在迭代中评估、更新粒子状态,实现对未知参数的反演。以二维静态电场逆问题为例进行数值实验,结果表明粒子群算法在有噪声干扰下能有效反演电荷分布。与传统方法相比,其收敛速度更快,能突破局部最优限制,显著提升求解精度,为电磁场逆问题解决提供新途径。但该算法在高维复杂问题中存在收敛变慢和易陷局部最优的问题,且对参数敏感。未来可通过引入自适应惯性权重、混合其他算法改进,同时拓展至三维及多物理场耦合等复杂电磁问题,以推动该领域发展并为实际应用提供更优解。
Electromagnetic field inverse problems are widely applied in various fields, but due to their high nonlinearity and ill-posedness, they pose challenges to traditional solution methods. This paper focuses on this issue and conducts in-depth research on the application of particle swarm optimization algorithm in solving electromagnetic field inverse problems. By constructing an adaptive model, determining the search space and parameter range, initializing the particle swarm, using the fitness function to evaluate and update the particle states during iterations, and achieving the inversion of unknown parameters. Taking the two-dimensional static electric field inverse problem as an example for numerical experiments, the results show that the particle swarm optimization algorithm can effectively invert the charge distribution under the influence of noise interference. Compared with traditional methods, it has a faster convergence speed, can break through the limitation of local optimum, significantly improve the solution accuracy, and provide a new approach for solving electromagnetic field inverse problems. However, this algorithm has problems of slow convergence and being prone to local optimum in high-dimensional complex problems, and is sensitive to parameters. In the future, it can be improved by introducing adaptive inertia weight and hybridizing with other algorithms, and expanded to three-dimensional and multi-physics field coupling complex electromagnetic problems to promote the development of this field and provide better solutions for practical applications.
王玙佳、张敏、杨依萱、梁文婧、董金秋
辽宁工程技术大学电子与信息工程学院,兴城市 125100辽宁工程技术大学电子与信息工程学院,兴城市 125100辽宁工程技术大学电子与信息工程学院,兴城市 125100辽宁工程技术大学电子与信息工程学院,兴城市 125100辽宁工程技术大学电子与信息工程学院,兴城市 125100
电工基础理论计算技术、计算机技术
电磁场逆问题粒子群算法数值实验收敛速度。
Inverse problem of electromagnetic fieldParticle swarm algorithmNumerical experimentConvergence speed.
王玙佳,张敏,杨依萱,梁文婧,董金秋.基于粒子群算法的电磁场逆问题优化研究[EB/OL].(2025-04-18)[2025-05-10].http://www.paper.edu.cn/releasepaper/content/202504-169.点此复制
评论