Remote sensing colour image semantic segmentation of trails created by large herbivorous Mammals
Remote sensing colour image semantic segmentation of trails created by large herbivorous Mammals
Identifying spatial regions where biodiversity is threatened is crucial for effective ecosystem conservation and monitoring. In this stydy, we assessed varios machine learning methods to detect grazing trails automatically. We tested five semantic segmentation models combined with 14 different encoder networks. The best combination was UNet with MambaOut encoder. The solution proposed could be used as the basis for tools aiming at mapping and tracking changes in grazing trails on a continuous temporal basis.
Cesar Garcia-Osorio、Jose Francisco Diez-Pastor、Francisco Javier Gonzalez-Moya、Pedro Latorre-Carmona、Francisco Javier Perez-Barbería、Ludmila I. Kuncheva、Antonio Canepa-Oneto、Alvar Arnaiz-González
遥感技术
Cesar Garcia-Osorio,Jose Francisco Diez-Pastor,Francisco Javier Gonzalez-Moya,Pedro Latorre-Carmona,Francisco Javier Perez-Barbería,Ludmila I. Kuncheva,Antonio Canepa-Oneto,Alvar Arnaiz-González.Remote sensing colour image semantic segmentation of trails created by large herbivorous Mammals[EB/OL].(2025-04-16)[2025-05-29].https://arxiv.org/abs/2504.12121.点此复制
评论