High-Stability Single-Ion Clock with $5.5\times10^{-19}$ Systematic Uncertainty
High-Stability Single-Ion Clock with $5.5\times10^{-19}$ Systematic Uncertainty
We report a single-ion optical atomic clock with fractional frequency uncertainty of $5.5\times10^{-19}$ and fractional frequency stability of $3.5 \times10^{-16}/\sqrt{\tau/\mathrm{s}}$, based on quantum logic spectroscopy of a single $^{27}$Al$^+$ ion. A co-trapped $^{25}$Mg$^+$ ion provides sympathetic cooling and quantum logic readout of the $^{27}$Al$^+$ $^1$S$_0\leftrightarrow^3$P$_0$ clock transition. A Rabi probe duration of 1 s, enabled by laser stability transfer from a remote cryogenic silicon cavity across a 3.6 km fiber link, results in a threefold reduction in instability compared to previous $^{27}$Al$^+$ clocks. Systematic uncertainties are lower due to an improved ion trap electrical design, which reduces excess micromotion, and a new vacuum system, which reduces collisional shifts. We also perform a direction-sensitive measurement of the ac magnetic field due to the RF ion trap, eliminating systematic uncertainty due to field orientation.
Tara M. Fortier、Jun Ye、David R. Leibrandt、David B. Hume、Mason C. Marshall、Daniel A. Rodriguez Castillo、Willa J. Arthur-Dworschack、Alexander Aeppli、Kyungtae Kim、Dahyeon Lee、William Warfield、Joost Hinrichs、Nicholas V. Nardelli
物理学真空技术
Tara M. Fortier,Jun Ye,David R. Leibrandt,David B. Hume,Mason C. Marshall,Daniel A. Rodriguez Castillo,Willa J. Arthur-Dworschack,Alexander Aeppli,Kyungtae Kim,Dahyeon Lee,William Warfield,Joost Hinrichs,Nicholas V. Nardelli.High-Stability Single-Ion Clock with $5.5\times10^{-19}$ Systematic Uncertainty[EB/OL].(2025-04-17)[2025-05-25].https://arxiv.org/abs/2504.13071.点此复制
评论