|国家预印本平台
首页|MIB: A Mechanistic Interpretability Benchmark

MIB: A Mechanistic Interpretability Benchmark

MIB: A Mechanistic Interpretability Benchmark

来源:Arxiv_logoArxiv
英文摘要

How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.

Yonatan Belinkov、Michael Hanna、Jing Huang、Rohan Gupta、Yaniv Nikankin、Hadas Orgad、Nikhil Prakash、Anja Reusch、Aruna Sankaranarayanan、Shun Shao、Alessandro Stolfo、Martin Tutek、Amir Zur、David Bau、Aaron Mueller、Atticus Geiger、Sarah Wiegreffe、Dana Arad、Iván Arcuschin、Adam Belfki、Yik Siu Chan、Jaden Fiotto-Kaufman、Tal Haklay

计算技术、计算机技术

Yonatan Belinkov,Michael Hanna,Jing Huang,Rohan Gupta,Yaniv Nikankin,Hadas Orgad,Nikhil Prakash,Anja Reusch,Aruna Sankaranarayanan,Shun Shao,Alessandro Stolfo,Martin Tutek,Amir Zur,David Bau,Aaron Mueller,Atticus Geiger,Sarah Wiegreffe,Dana Arad,Iván Arcuschin,Adam Belfki,Yik Siu Chan,Jaden Fiotto-Kaufman,Tal Haklay.MIB: A Mechanistic Interpretability Benchmark[EB/OL].(2025-04-17)[2025-04-27].https://arxiv.org/abs/2504.13151.点此复制

评论