Intermediate algebras of semialgebraic functions
Intermediate algebras of semialgebraic functions
We characterize intermediate $\mathbb{R}$-algebras $A$ between the ring of semialgebraic functions ${\mathcal S}(X)$ and the ring ${\mathcal S}^*(X)$ of bounded semialgebraic functions on a semialgebraic set $X$ as rings of fractions of ${\mathcal S}(X)$. This allows us to compute the Krull dimension of $A$, the transcendence degree over $\mathbb{R}$ of the residue fields of $A$ and to obtain a \L ojasiewicz inequality and a Nullstellensatz for archimedean $\mathbb{R}$-algebras $A$. In addition we study intermediate $\mathbb{R}$-algebras generated by proper ideals and we prove an extension theorem for functions in such $\mathbb{R}$-algebras.
E. Baro、J. F. Fernando、J. M. Gamboa
数学
E. Baro,J. F. Fernando,J. M. Gamboa.Intermediate algebras of semialgebraic functions[EB/OL].(2025-04-17)[2025-05-28].https://arxiv.org/abs/2504.13225.点此复制
评论