基于跨模态特征解耦的多模态基础模型去偏见方法
机器学习模型已被证明会从其训练数据集继承偏见,尤其是从互联网上大规模抓取的未经处理数据集上训练的多模态基础模型,这些偏见经过微调会放大并传播至下游任务中。本研究提出了一种通过跨模态投影正交,在微调过程中将多模态嵌入中的偏见属性特征与目标属性特征解耦来对多模态基础模型进行去偏的通用方法,使得模型学习到不包含偏见信息的公平表示。此外,针对多模态基础模型的公平性研究往往涉及多个偏见属性的问题,可以有效扩展至多偏见属性的去偏见场景,在一次微调过程中能同时解耦多个偏见属性,仅需要较少的计算资源
Machine learning models have been proven to inherit biases from their training datasets, especially the multimodal foundation models trained on large-scale, unprocessed datasets crawled from the In-ternet. These biases will be amplified and propagated to downstream tasks after fine-tuning. This study proposes a general method for debiasing multimodal foundation models by decoupling the bi-as attribute features and the target attribute features in the multimodal embedding through orthogo-nal projection during the fine-tuning process. This enables the model to learn a fair representation that does not contain bias information. Moreover, the fairness research on multimodal foundation models often involves multiple bias attributes. We demonstrate the effectiveness of our method, which can decouple multiplDebiasing Method for Multimodal Foundation Models Based on Cross-Modal Feature Decouplinge bias attributes simultaneously in a single fine-tuning with only a small amount of computing resources.
易宇轩、桑基韬
北京交通大学计算机科学与技术学院北京交通大学计算机科学与技术学院
计算技术、计算机技术
计算机应用技术1多模态基础模型2公平性3特征解耦4多偏见属性去偏
multimodalfairnessfeature decouplingmulti-bias debiasing
易宇轩,桑基韬.基于跨模态特征解耦的多模态基础模型去偏见方法[EB/OL].(2025-04-21)[2025-04-24].http://www.paper.edu.cn/releasepaper/content/202504-181.点此复制
评论