Can LLMs handle WebShell detection? Overcoming Detection Challenges with Behavioral Function-Aware Framework
Can LLMs handle WebShell detection? Overcoming Detection Challenges with Behavioral Function-Aware Framework
WebShell attacks, in which malicious scripts are injected into web servers, are a major cybersecurity threat. Traditional machine learning and deep learning methods are hampered by issues such as the need for extensive training data, catastrophic forgetting, and poor generalization. Recently, Large Language Models (LLMs) have gained attention for code-related tasks, but their potential in WebShell detection remains underexplored. In this paper, we make two major contributions: (1) a comprehensive evaluation of seven LLMs, including GPT-4, LLaMA 3.1 70B, and Qwen 2.5 variants, benchmarked against traditional sequence- and graph-based methods using a dataset of 26.59K PHP scripts, and (2) the Behavioral Function-Aware Detection (BFAD) framework, designed to address the specific challenges of applying LLMs to this domain. Our framework integrates three components: a Critical Function Filter that isolates malicious PHP function calls, a Context-Aware Code Extraction strategy that captures the most behaviorally indicative code segments, and Weighted Behavioral Function Profiling (WBFP) that enhances in-context learning by prioritizing the most relevant demonstrations based on discriminative function-level profiles. Our results show that larger LLMs achieve near-perfect precision but lower recall, while smaller models exhibit the opposite trade-off. However, all models lag behind previous State-Of-The-Art (SOTA) methods. With BFAD, the performance of all LLMs improved, with an average F1 score increase of 13.82%. Larger models such as GPT-4, LLaMA 3.1 70B, and Qwen 2.5 14B outperform SOTA methods, while smaller models such as Qwen 2.5 3B achieve performance competitive with traditional methods. This work is the first to explore the feasibility and limitations of LLMs for WebShell detection, and provides solutions to address the challenges in this task.
Feijiang Han、Jiaming Zhang、Chuyi Deng、Jianheng Tang、Yunhuai Liu
计算技术、计算机技术
Feijiang Han,Jiaming Zhang,Chuyi Deng,Jianheng Tang,Yunhuai Liu.Can LLMs handle WebShell detection? Overcoming Detection Challenges with Behavioral Function-Aware Framework[EB/OL].(2025-04-14)[2025-04-26].https://arxiv.org/abs/2504.13811.点此复制
评论