|国家预印本平台
首页|Universality of G-subshifts with specification

Universality of G-subshifts with specification

Universality of G-subshifts with specification

来源:Arxiv_logoArxiv
英文摘要

Let $G$ be an infinite countable amenable group and let $(X,G)$ be a $G$-subshift with specification, containing a free element. We prove that $(X,G)$ is universal, i.e., has positive topological entropy and for any free ergodic $G$-action on a standard probability space, $(Y,\nu,G)$, with $h(\nu)<h_{top}(X)$, there exists a shift-invariant measure $\mu$ on $X$ such that the systems $(Y,\nu,G)$ and $(X,\mu,G)$ are isomorphic. In particular, any $K$-shift (consisting of the indicator functions of all maximal $K$-separated sets) containing a free element is universal.

Tomasz Downarowicz、Benjamin Weiss、Mateusz Wi?cek、Guohua Zhang

数学

Tomasz Downarowicz,Benjamin Weiss,Mateusz Wi?cek,Guohua Zhang.Universality of G-subshifts with specification[EB/OL].(2025-04-17)[2025-06-04].https://arxiv.org/abs/2504.13307.点此复制

评论