|国家预印本平台
首页|Generalized super-$W_{1+\infty}$-$n$-algebra and Landau Problem

Generalized super-$W_{1+\infty}$-$n$-algebra and Landau Problem

Generalized super-$W_{1+\infty}$-$n$-algebra and Landau Problem

来源:Arxiv_logoArxiv
英文摘要

We investigate the $\mathcal{R}(p,q)$-super $n$-bracket and study their properties such that the generalized super Jacobi identity (GJSI). Furthermore, from the $\mathcal{R}(p,q)$-operators in a Supersymmetric Landau problem, we furnish the $\mathcal{R}(p,q)$-super $W_{1+\infty}$ $n$-algebra which obey the generalized super Jacobi identity (GSJI) for $n$ even. Also, we derive the $\mathcal{R}(p,q)$-super $W_{1+\infty}$ sub-$2n$-algebra and deduce particular cases induced by quantum algebras existing in the literature.

Fridolin Melong、Raimar Wulkenhaar

物理学

Fridolin Melong,Raimar Wulkenhaar.Generalized super-$W_{1+\infty}$-$n$-algebra and Landau Problem[EB/OL].(2025-04-17)[2025-05-26].https://arxiv.org/abs/2504.13319.点此复制

评论