|国家预印本平台
首页|An algorithm to compute Selmer groups via resolutions by permutations modules

An algorithm to compute Selmer groups via resolutions by permutations modules

An algorithm to compute Selmer groups via resolutions by permutations modules

来源:Arxiv_logoArxiv
英文摘要

Given a number field with absolute Galois group $\mathcal{G}$, a finite Galois module $M$, and a Selmer system $\mathcal{L}$, this article gives a method to compute Sel$_\mathcal{L}$, the Selmer group of $M$ attached to $\mathcal{L}$. First we describe an algorithm to obtain a resolution of $M$ where the morphisms are given by Hecke operators. Then we construct another group $H^1_S(\mathcal{G}, M)$ and we prove, using the properties of Hecke operators, that $H^1_S(\mathcal{G}, M)$ is a Selmer group containing Sel$_\mathcal{L}$. Then, we discuss the time complexity of this method.

Fabrice Etienne

UB, CANARI, IMB

数学

Fabrice Etienne.An algorithm to compute Selmer groups via resolutions by permutations modules[EB/OL].(2025-04-18)[2025-05-24].https://arxiv.org/abs/2504.13506.点此复制

评论