|国家预印本平台
首页|Schanuel Property for Elliptic and Quasi--Elliptic Functions

Schanuel Property for Elliptic and Quasi--Elliptic Functions

Schanuel Property for Elliptic and Quasi--Elliptic Functions

来源:Arxiv_logoArxiv
英文摘要

For almost all tuples $(x_1,\dots,x_n)$ of complex numbers, a strong version of Schanuel's Conjecture is true: the $2n$ numbers $x_1,\dots,x_n, {\mathrm e}^{x_1},\dots, {\mathrm e}^{x_n}$ are algebraically independent. Similar statements hold when one replaces the exponential function ${\mathrm e}^z$ with algebraically independent functions. We give examples involving elliptic and quasi--elliptic functions, that we prove to be algebraically independent: $z$, $\wp(z)$, $\zeta(z)$, $\sigma(z)$, exponential functions, and Serre functions related with integrals of the third kind.

Michel Waldschmidt

数学

Michel Waldschmidt.Schanuel Property for Elliptic and Quasi--Elliptic Functions[EB/OL].(2025-04-18)[2025-05-22].https://arxiv.org/abs/2504.14041.点此复制

评论