The n-th prime exponentially
The n-th prime exponentially
From known effective bounds on the prime counting function of the form \[ |\pi(x)-\mathrm{Li}(x)| < a \;x \;(\ln x)^{b} \; \exp\left(-{c}\; \sqrt{\ln x}\right); \qquad (x \geq x_0); \] it is possible to establish exponentially tight effective upper and lower bounds on the prime number theorem: For $x \geq x_*$ where $x_*\leq \max\{x_0,17\}$ we have: \[ {\mathrm{Li} \over 1+a\; (\ln x)^{b+1} \; \exp\left(-c\; \sqrt{\ln x}\right)} < \pi(x) < {\mathrm{Li} \over 1-a \;(\ln x)^{b+1} \; \exp\left(-c\; \sqrt{\ln x}\right)}. \] Furthermore, it is possible to establish exponentially tight effective upper and lower bounds on the location of the $n^{th}$ prime. Specifically: \[ p_n < \mathrm{Li}^{-1} \left( n \left[1+ a \;(\ln[n\ln n])^{b+1} \; \exp\left(-{c}\; \sqrt{\ln[n\ln n]}\right)\right] \right); \qquad (n\geq n_*). \] \[ p_n > \mathrm{Li}^{-1} \left( n \left[1- a \;(\ln[n\ln n])^{b+1} \; \exp\left(-{c}\; \sqrt{\ln[n\ln n]}\right)\right] \right); \qquad (n\geq n_*). \] Here the range of validity is explicitly bounded by some $n_*$ satisfying \[ n_* \leq \max\left\{\pi(x_0),\pi(17), \pi\left( (1+e^{-1}) \exp\left( \left[2(b+1)\over c\right]^2\right)\right) \right\}. \] Many other fully explicit bounds along these lines can easily be developed.
Matt Visser
Victoria University of Wellington
数学
Matt Visser.The n-th prime exponentially[EB/OL].(2025-04-19)[2025-05-09].https://arxiv.org/abs/2504.14458.点此复制
评论