|国家预印本平台
首页|变系数部分函数型线性模型的稳健估计

变系数部分函数型线性模型的稳健估计

中文摘要英文摘要

随着信息时代观测技术的发展,气象监测、金融分析等领域中多源异构数据的分析需求日益凸显。此类数据常以高维函数型形式呈现(如曲线或图像),随着信息时代观测技术的发展,气象监测、金融分析等领域中多源异构数据的分析需求日益凸显。此类数据常以高维函数型形式呈现(如曲线或图像),其强相关性特征使得传统统计方法面临挑战:忽视函数特性可能导致维度灾难与过拟合,而固定系数线性模型难以刻画变量关系的动态变化。变系数部分函数型模型通过将参数扩展为时空或环境协变量的函数,为融合异构数据特征提供了可行方案,但其传统估计方法对数据干扰较为敏感。针对上述问题,本文提出一种基于众数回归的稳健估计方法。该方法通过函数型主成分分析提取协变量核心特征,利用B样条基函数逼近时变系数,并结合众数回归降低异常值影响。理论分析证明了估计量的渐近收敛性,通过不同误差分布的数值实验验证了方法的有效性。实验结果表明,相较于传统最小二乘估计,本文方法在存在数据干扰时具有更好的稳定性,且在模型精度方面表现更优。这一研究为函数型数据与变系数模型的结合提供了新的分析视角,对实际应用中存在噪声干扰的数据建模具有参考意义。

With the rapid development of observation technologies in the information era, there is a growing demand for analyzing multi-source heterogeneous data in fields such as meteorological monitoring, financial analysis, and biomedical research. Such data often exhibit high-dimensional functional characteristics (e.g., curves or images) with strong correlations, posing challenges to traditional statistical methods: ignoring functional features may lead to the curse of dimensionality and overfitting, while fixed-coefficient linear models fail to capture dynamic relationships among variables. The varying-coefficient partial functional linear model addresses these limitations by extending parameters into functions of spatiotemporal or environmental covariates, providing a feasible framework for integrating heterogeneous data features. However, conventional estimation methods for this model remain sensitive to data perturbations.To overcome these challenges, this paper proposes a robust estimation approach based on modal regression. Specifically, the method extracts core features of functional covariates through functional principal component analysis (FPCA), approximates time-varying coefficients using B-spline basis functions, and mitigates outlier impacts by leveraging the inherent robustness of modal regression. Theoretical analysis establishes the asymptotic convergence properties of the proposed estimators, while numerical experiments under diverse error distributions validate the method\'s effectiveness. Results demonstrate that, compared to traditional least squares estimation, our approach achieves enhanced stability in the presence of data disturbances and superior accuracy in model fitting. This study offers a new analytical perspective for combining functional data analysis with varying-coefficient modeling, providing practical insights for data-driven applications involving noise-contaminated observations.

熊豪、周国立

重庆大学数学与统计学院,重庆市,400044重庆大学数学与统计学院,重庆市,400044

大气科学(气象学)计算技术、计算机技术数学

变系数函数型数据众数回归

Varying-CoefficientFunctional DataModal Regression

熊豪,周国立.变系数部分函数型线性模型的稳健估计[EB/OL].(2025-04-23)[2025-04-24].http://www.paper.edu.cn/releasepaper/content/202504-193.点此复制

评论