The automorphism group of torsion points of an elliptic curve over a field of characteristic $\ge 5$
The automorphism group of torsion points of an elliptic curve over a field of characteristic $\ge 5$
For a field $\mathbb{K}$ of characteristic $p\ge5$ containing $\mathbb{F}_{p}^{\operatorname{alg}}$ and the elliptic curve $E_{s,t}: y^{2} = x^{3} + sx + t$ defined over the function field $\mathbb{K}\left(s,t\right)$ of two variables $s$ and $t$, we prove that for a non-negative positive integer $e$ and a positive integer $N$ which is not divisible by $p$, the automorphism group of the normal extension $\mathbb{K}\left(s,t\right)\left(E_{s,t}\left[p^{e} N\right]\right)$ over $\mathbb{K}\left(s,t\right)$ is isomorphic to $\left(\mathbb{Z}/p^{e}\mathbb{Z}\right)^{\times} \times \operatorname{SL}_{2} \left(\mathbb{Z}/N\mathbb{Z}\right)$.
Bo-Hae Im、Hansol Kim
数学
Bo-Hae Im,Hansol Kim.The automorphism group of torsion points of an elliptic curve over a field of characteristic $\ge 5$[EB/OL].(2025-04-21)[2025-05-14].https://arxiv.org/abs/2504.14859.点此复制
评论