|国家预印本平台
首页|Equivariant quasisymmetry and noncrossing partitions

Equivariant quasisymmetry and noncrossing partitions

Equivariant quasisymmetry and noncrossing partitions

来源:Arxiv_logoArxiv
英文摘要

We introduce a definition of ``equivariant quasisymmetry'' for polynomials in two sets of variables. Using this definition we define quasisymmetric generalizations of the theory of double Schur and double Schubert polynomials that we call double fundamental polynomials and double forest polynomials, where the subset of ``noncrossing partitions'' plays the role of $S_n$. In subsequent work we will show this combinatorics is governed by a new geometric construction we call the ``quasisymmetric flag variety'' which plays the same role for equivariant quasisymmetry as the usual flag variety plays in the classical story.

Nantel Bergeron、Lucas Gagnon、Philippe Nadeau、Hunter Spink、Vasu Tewari

数学

Nantel Bergeron,Lucas Gagnon,Philippe Nadeau,Hunter Spink,Vasu Tewari.Equivariant quasisymmetry and noncrossing partitions[EB/OL].(2025-04-21)[2025-05-21].https://arxiv.org/abs/2504.15234.点此复制

评论