|国家预印本平台
首页|Clifford Group Equivariant Diffusion Models for 3D Molecular Generation

Clifford Group Equivariant Diffusion Models for 3D Molecular Generation

Clifford Group Equivariant Diffusion Models for 3D Molecular Generation

来源:Arxiv_logoArxiv
英文摘要

This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.

Cong Liu、Sharvaree Vadgama、David Ruhe、Erik Bekkers、Patrick Forré

数学物理学

Cong Liu,Sharvaree Vadgama,David Ruhe,Erik Bekkers,Patrick Forré.Clifford Group Equivariant Diffusion Models for 3D Molecular Generation[EB/OL].(2025-04-22)[2025-05-22].https://arxiv.org/abs/2504.15773.点此复制

评论