TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval
TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval
We address the challenge of retrieving previously fact-checked claims in monolingual and crosslingual settings - a critical task given the global prevalence of disinformation. Our approach follows a two-stage strategy: a reliable baseline retrieval system using a fine-tuned embedding model and an LLM-based reranker. Our key contribution is demonstrating how LLM-based translation can overcome the hurdles of multilingual information retrieval. Additionally, we focus on ensuring that the bulk of the pipeline can be replicated on a consumer GPU. Our final integrated system achieved a success@10 score of 0.938 and 0.81025 on the monolingual and crosslingual test sets, respectively.
Prasanna Devadiga、Arya Suneesh、Pawan Kumar Rajpoot、Bharatdeep Hazarika、Aditya U Baliga
计算技术、计算机技术
Prasanna Devadiga,Arya Suneesh,Pawan Kumar Rajpoot,Bharatdeep Hazarika,Aditya U Baliga.TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval[EB/OL].(2025-04-23)[2025-05-06].https://arxiv.org/abs/2504.16627.点此复制
评论