On the eta invariant of (2,3,5) distributions
On the eta invariant of (2,3,5) distributions
We consider the Rumin complex associated with a generic rank two distribution on a closed 5-manifold. The Rumin differential in middle degrees gives rise to a self-adjoint differential operator of Heisenberg order two. We study the eta function and the eta invariant of said operator, twisted by unitary flat vector bundles. For (2,3,5) nilmanifolds this eta invariant vanishes but the eta function is nontrivial, in general. We establish a formula expressing the eta function of (2,3,5) nilmanifolds in terms of more elementary functions.
Stefan Haller
数学
Stefan Haller.On the eta invariant of (2,3,5) distributions[EB/OL].(2025-04-25)[2025-07-25].https://arxiv.org/abs/2504.18417.点此复制
评论