|国家预印本平台
首页|Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning

Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning

Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning

来源:Arxiv_logoArxiv
英文摘要

We introduce Ring-topology Decentralized Federated Learning (RDFL) for distributed model training, aiming to avoid the inherent risks of centralized failure in server-based FL. However, RDFL faces the challenge of low information-sharing efficiency due to the point-to-point communication manner when handling inherent data heterogeneity. Existing studies to mitigate data heterogeneity focus on personalized optimization of models, ignoring that the lack of shared information constraints can lead to large differences among models, weakening the benefits of collaborative learning. To tackle these challenges, we propose a Divide-and-conquer RDFL framework (DRDFL) that uses a feature generation model to extract personalized information and invariant shared knowledge from the underlying data distribution, ensuring both effective personalization and strong generalization. Specifically, we design a \textit{PersonaNet} module that encourages class-specific feature representations to follow a Gaussian mixture distribution, facilitating the learning of discriminative latent representations tailored to local data distributions. Meanwhile, the \textit{Learngene} module is introduced to encapsulate shared knowledge through an adversarial classifier to align latent representations and extract globally invariant information. Extensive experiments demonstrate that DRDFL outperforms state-of-the-art methods in various data heterogeneity settings.

计算技术、计算机技术

.Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning[EB/OL].(2025-04-27)[2025-05-15].https://arxiv.org/abs/2504.19103.点此复制

评论