|国家预印本平台
首页|氧还原反应中四电子和两电子的研究进展

氧还原反应中四电子和两电子的研究进展

中文摘要英文摘要

氧还原反应(ORR)作为燃料电池、金属-空气电池等清洁能源技术的核心电化学过程,其催化剂的性能直接影响能量转换效率与装置寿命。本文系统综述了四电子(完全还原为H?O)与双电子(选择性生成H?O?)两大ORR路径的催化剂研究进展,重点探讨了贵金属与非贵金属体系的优势、挑战及未来发展方向。在四电子ORR催化体系中,贵金属铂(Pt)凭借其适中的氧中间体吸附能与高电荷转移效率,仍是商业化催化剂的性能基准。然而,铂基材料的资源稀缺性与过电势限制推动研究者聚焦于合金化策略及纳米结构设计。与此同时,非贵金属催化剂展现出替代潜力。钴基尖晶石氧化物通过晶体场效应诱导电子协同作用,在碱性介质中接近铂的活性。然而,非贵金属体系在强酸性环境下面临严峻挑战。突破瓶颈需通过缺陷工程、载体复合及表面钝化等策略强化材料本征稳定性。双电子ORR路径因可原位合成过氧化氢(H?O?)而备受关注,其核心在于精准调控催化剂对*OOH中间体的吸附强度与O-O键活化程度。贵金属基材料可实现高选择性与活性的平衡。非贵金属体系凭借多级孔隙结构与可调的电子特性,在碱性介质中展现出良好的H?O?选择性,但其酸性条件下的腐蚀失活与活性位点重构问题亟待解决。

Oxygen reduction reaction (ORR) is the core electrochemical process of clean energy technologies such as fuel cells and metal-air batteries, and the performance of its catalyst directly affects the energy conversion efficiency and device life. In this paper, we systematically review the research progress of catalysts with four electrons (complete reduction to H?O) and two electrons (selective generation of H?O?), focusing on the advantages, challenges and future development directions of precious and non-precious metal systems. Among the four-electron ORR catalytic systems, the precious metal platinum (Pt) remains the performance benchmark of commercial catalysts due to its moderate oxygen intermediate adsorption energy and high charge transfer efficiency. However, the resource scarcity and overpotential limitation of platinum-based materials have prompted researchers to focus on alloying strategies and nanostructure design. At the same time, non-precious metal catalysts show substitution potential. Cobalt-based spinel oxides induce electron synergy through the crystal field effect, approaching the activity of platinum in alkaline media. However, non-precious metal systems face severe challenges in a strongly acidic environment. To overcome these bottlenecks, it is necessary to strengthen the intrinsic stability of materials through defect engineering, carrier composite, and surface passivation. The two-electron ORR pathway has attracted much attention for the in-situ synthesis of hydrogen peroxide (H?O?), the core of which is to precisely control the adsorption intensity and O-O bond activation degree of the catalyst to *OOH intermediates. Precious metal-based materials achieve a balance of high selectivity and activity through surface engineering and heterostructure design. Due to its multi-level pore structure and tunable electronic properties, the non-noble metal system exhibits good H?O? selectivity in alkaline media, but the problems of corrosion deactivation and active site reconstruction under acidic conditions need to be solved urgently.

倪宇隆、李静

重庆大学化学化工学院重庆大学化学化工学院

能源动力工业经济

能源转换氧还原反应四电子路径两电子路径

energy conversionoxygen reduction reactionsFour-electron pathTwo electron path

倪宇隆,李静.氧还原反应中四电子和两电子的研究进展[EB/OL].(2025-04-29)[2025-07-09].http://www.paper.edu.cn/releasepaper/content/202504-227.点此复制

评论